Deformations of nilpotent cones and Springer correspondences

نویسنده

  • Syu Kato
چکیده

Let G = Sp(2n) be the symplectic group over Z. We present a certain kind of deformation of the nilpotent cone of G with G-action. This enables us to make direct links between the Springer correspondence of sp 2n over C, that over characteristic two, and our exotic Springer correspondence. As a by-product, we obtain a complete description of our exotic Springer correspondence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEFORMATIONS OF NILPOTENT CONES AND SPRINGER CORRESPONDENCES By SYU KATO Dedicated to the long-standing friendship of

Let G = Sp (2n) be the symplectic group over Z. We present a certain kind of deformation of the nilpotent cone of G with G-action. This enables us to make direct links between the Springer correspondence of sp2n over C, that over characteristic two, and our exotic Springer correspondence. As a by-product, we obtain a complete description of our exotic Springer correspondence. Introduction. Let ...

متن کامل

Sheaves on Nilpotent Cones, Fourier Transform, and a Geometric Ringel Duality

Given the nilpotent cone of a complex reductive Lie algebra, we consider its equivariant constructible derived category of sheaves with coefficients in an arbitrary field. This category and its subcategory of perverse sheaves play an important role in Springer theory and the theory of character sheaves. We show that the composition of the Fourier–Sato transform on the Lie algebra followed by re...

متن کامل

Birational geometry and deformations of nilpotent orbits

In order to explain what we want to do in this paper, let us begin with an explicit example. Let O be the nilpotent orbit of sl(4,C) with Jordan type [3, 1] (under the adjoint action of G := SL(4,C)). We will denote by Xi,j,k the cotangent bundle T (G/Pi,j,k) of the projective manifold G/Pi,j,k where Pi,j,k is a parabolic subgroup of G with flag type (i, j, k). Then the closure Ō of O admits th...

متن کامل

Orbits in the Enhanced and Exotic Nilpotent Cones

We give a semi-direct product decomposition of the point stabilisers for the enhanced and exotic nilpotent cones. In particular, we arrive at formulas for the number of points in each orbit over a finite field. This is in accordance with a conjecture of Achar-Henderson. Introduction In the theory of algebraic groups, we find that there is much insight to be gained from studying the nilpotent co...

متن کامل

On the geometry of exotic nilpotent cones

This paper is a sequel to [K]. Let G be a complex symplectic group. In [K], we constructed a certain G-variety N = N1, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for the Weyl group of type C, but shares a similar flavor with that of type A case. (I.e. t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009